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Abstract
This study presents a novel approach of using high-resolution multispectral data 
acquired by an unmanned aerial system (UAS) combined with in situ chemical data 
to assess water quality parameters at 12 relatively small water bodies located in the 
Tharsis complex, an abandoned mining area highly affected by acid mine drainage 
(AMD) pollution. The spectral data jointly with water physicochemical data were used 
to estimate water quality parameters using regression analysis. Parameters including 
pH, ORP, EC, Al, Cu, Fe, Mn, S, Si, and Zn were estimated with high accuracy levels 
while Ba, Ca, and Mg showed low accuracy.
Keywords: Acid Mine Drainage, Abandoned Mine, Water Monitoring, Drone, Low Al-
titude Remote Sensing, Multispectral Sensor
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Introduction
AMD is the main environmental pollution 
problem associated with coal and metal-
bearing mineral mining. It is of international 
concern due to the difficulty in avoiding 
its formation and its long-lasting nature; 
it can occur indefinitely even after mining 
operations have ceased (Qian and Li 2019). 
Thus, there is a need to develop monitoring 
tools that can be used by the competent 
environmental agency and companies in 
charge of the mining concessions. Traditional 
procedures for water quality monitoring in 
reservoirs involve in-situ measurements, 
sampling, and laboratory analysis. Remote 
sensing provides a powerful alternative tool 
that is less time-consuming and provides 
spatial and temporal information to monitor 
water quality changes. However, this 
approach has been scarcely used to report the 
water quality status in mining areas. Water 
bodies associated with AMD have a complex 
composition that requires quantifying a wide 
range of parameters and few studies have 
addressed this issue by applying quantitative 
modeling of hydrochemical concentrations 

(Tesfamichael and Ndlovu 2018; Modiegi 
et al. 2020). Most recently, UAS-based 
hyperspectral data have been successfully 
used to monitor acidic water, generating 
high-resolution hydrogeochemical maps 
(Flores et al. 2021). Indeed, UAS is becoming 
increasingly popular in environmental 
monitoring due to its acquisition flexibility, 
high spatial and temporal resolution 
achieved, and the possibility of acquiring data 
not affected by cloud cover. 

In this context, the calibration of empirical 
models is proposed through regression 
analysis to predict water quality parameters 
using in situ physicochemical parameters 
and spectral reflectance values obtained 
by a commercial sensor, the Micasense 
RedEdge-MX Dual. This sensor has already 
been tested for many purposes such as 
crop mapping, forestry, minerals mapping 
and land cover analysis. The Iberian Pyrite 
Belt (IPB), which hosts one of the largest 
concentrations of massive sulfides on Earth 
and is well-known for its mining tradition 
and extensive AMD environmental impacts, 
was selected as the study area. This work is 
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intended to implement an easily reproducible 
tool that can be used to monitor water bodies 
with different complex compositions in 
mine-affected zones. 

Methods 
Field campaigns were carried out during July 
and October 2020, consisting of simultaneous 
flight surveys with the Micasense 
RedEdge-MX Dual sensor onboard a UAS 
and in situ physicochemical data acquisition. 
The sampling sites involved 12 different water 
bodies containing acid and non-acid waters 
located in two abandoned mining sites in 
the Tharsis complex, in the IPB (fig. 1), the 
Tharsis Mine (fig. 1 A) and the Lagunazo 
Mine (fig. 1 B). 

Field physicochemical parameters 
such as pH, electrical conductivity (EC), 
and oxidation-reduction potential (ORP) 
were measured at each sampling point 
(yellow circles, fig. 1) with a CrisonMM40 
þ multimeter, previously calibrated with 
certified solutions. Water samples were 
collected in high-density polyethylene 
(HDPE) bottles previously washed with a 
solution of 10% HNO3, filtered immediately 
after sampling through a 0.45 mm pore size 
cellulose nitrate membrane, and acidified 
to pH < 2 with HNO3. The samples were 
analyzed by inductively coupled plasma-
atomic emission spectroscopy (ICP-AES; 
Perkin-Elmer® Optima 3200 RL) for major 
elements determination (Al, Ba, Ca, Cu, Fe, 
K, Mg, Mn, Na, P, S, Si, Sr, and Zn) at the 
Institute of Environment Assessment and 
Water Research (IDAEA-CSIC, Barcelona). 
Sierra Bullones (SB, fig. 1A) was not water 

sampled due to its inaccessibility. However, as 
it is connected underground to Filón Norte, 
and since their chemical properties have been 
shown to be similar (González et al. 2018), 
they were considered the same for this study.

The flight surveys were performed with the 
multispectral sensor Micasense RedEdge-MX 
Dual Camera onboard a DJI Matrice 210 V2 
RTK. For all the missions, the height was set 
at 120 m AGL (above ground level) altitude 
to ensure a ground sample distance (GSD) 
of 8 cm/pixel, the overlapping was set at 80% 
frontal and 75% side image overlap, the grid 
was simple, and the speed was set at 10 m/s. It 
is assumed that all the multispectral imagery 
is in the nadir position due to the location 
of the camera. The Downwelling light 
sensor (DLS 2) and MicaSense’s calibrated 
reflectance panel (CRP) were used in all 
the flights. The multispectral images were 
processed using the Pix4D mapper Structure 
from Motion (SfM) software. To perform the 
extraction of the spectral signature of each 
of the water bodies from the multispectral 
imagery, the centroid of the water body shape 
was extracted and the mean reflectance value 
of all the pixel values included in a circular 
buffer of 3 m around each centroid point was 
estimated using the zonal statistics plugin of 
QGIS 3.10.7. 

The collected data were divided into 
two subsets, the model calibration dataset 
(70%) and the validation dataset (30%). The 
waterbodies flights from July (EP) and from 
October (FC, FN, EG, EL, ML, SB, LLA, and 
LLB) were used for the model calibration, 
while the validation dataset consisted of the 
Th18, EG, and FS from July and LLC from 

Figure 1 Location map of the sampling sites. Yellow circles indicate the water samples collection. 
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October (the only data for LLC presented). 
To determine which spectral bands and/
or spectral band combinations (SBCs) 
were the best predictor for each chemical 
parameter, a correlation analysis was carried 
out between the raw and the ln-transformed 
chemical data versus the mean reflectance 
values of the spectral bands and the tested 
SBCs. Then, using the model calibration 
dataset, empirical models were constructed 
relating the mean reflectance values of the 
significant bands and/or the SBCs as the 
predictable variable with the chemical data 
and ln-transformed chemical data as the 
dependent variable. A total of 17 water quality 
parameters (pH, ORP, EC, Al, Ba, Ca, Cu, Fe, 
K, Mg, Mg, Na, P, S, Si, Sr, and Zn), the 10 
sensor’s spectral bands and 10 SBCs (table 
1) were considered in this study. To ensure 
reliable models, simple linear regression 
(SLR) and multiple linear regression (MLR) 
using a stepwise selection method were 
tested. The prediction quality of the models 
was assessed on the validation dataset and 
the performance metric statistics calculated 
were: normalized root mean square error 
(RMSE%), mean absolute percentage error 
(MAPE), Mean absolute error (MAE), bias, 
and coefficient of determination (R2). The 
best-fitted models were used to generate 
spatial distribution maps. 

Results
According to the in situ and laboratory 
measurements of the water quality 
parameters, which are representative of 
the water surface layer’s composition at the 
time of sampling, the waterbodies selected 

showed a wide range of water compositions, 
from circumneutral to extremely acidic pH 
(0.01 - 7.76) and from low to high metal-
enriched solutions (e.g., 0.04 - 4795.70 mg 
L-1 of Al, 0.04 - 318.67 mg L-1 of Mn, 0.06 - 
2011.35 mg L-1 of Zn). Concerning the pH 
value, EP, FC, FN, FS, SB, ML, TH18, LLA, 
LLB, LLC correspond to acid waters (pH 0.01 
- 3.81) while EG and EL are non-acid water  
(pH 6.62 - 7.76). 

Apart from the physicochemical 
composition, the water bodies can be 
grouped based on their colors, which mainly 
depends on the contents of organic matter, 
algae, suspended particulates, and nutrients. 
Thus, while EG and ML have shades of brown 
or green, EP and ML present greenish-blue 
color, and the rest of the acid water bodies 
have a dark reddish-brown color. The Fe+2 
ions give water a greenish color and when 
Fe+3 ions are more abundant, they are 
responsible for giving the water the intense 
red color (Schroeter and GläÄer 2011; Riaza 
et al. 2014; Davies and Calvin 2017; Flores 
et al. 2021). Although in this study, the Fe 
speciation was not quantified, the ORP 
values of about 500 mV found in all the dark 
reddish-brown acid waters indicate oxidized 
aqueous environments and the prevalence of 
ferric iron (Flores et al. 2021). In contrast, the 
redox potential in the greenish-blue acidic 
water bodies (i.e. EP and ML) was about 300 
mV, suggesting that Fe+2 ions prevail over 
Fe+3. The dissolved iron composition in the 
dark reddish-brown acid waters was between 
352.37 (TH18) and 68940.00 (LLB) mg L-1, 
while for the rest of the water bodies it ranged 
between 0.05 (EL) - 0.99 (ML) mg L-1.

Table 1 List of Spectral Band Combinations (SBCs) tested in this study.

Algorithm Band math Reference

A1 (NDVI)1 (NIR-R650)/(NIR+R650) (Rouse and Space 1978)

A2 (NDWI)2 (g560-NIR)/(g560+NIR) (McFeeters 1996)

A3 r650/re705 Simple ratio 

A4 re705/nir Simple ratio

A5 (g531/g560)*r650 Three-band algorithm 

A6 (re705/re717)*r668 Three-band algorithm

A7 (g560*g531)/b475 Three-band algorithm

A8 (g560-g531)/b475 Three-band algorithm

A9 (g560/g531)*b475 Three-band algorithm

A10 (re705/r650)*g531 Three-band algorithm
1Normalized difference vegetation index (NDVI); 2Normalized difference water index (NDWI) 
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The elements K, P, Na, and Sr did 
not show a significant correlation with 
any spectral band or SBC, and they were 
discarded from the model calibration. The 
parameters correlated to a band or SBC with 
a Pearson coefficient exceeding 0.8 were used 
to construct different SLR and MLR models. 
Among the various regression representations 
with the validation dataset, the models 
having the best performance metric statistics 
were selected as the final model to predict 
the spatial distribution of water parameters 
(table 2). The lowest values of RMSE% 
registered by the selected models (RMSE% = 
4 for ln(ORP) and RMSE% = 12 for ln(Ca) 
reflected the good prediction capability of 
the models. Ln(Al), ln(Ca), and ln(Mn) 
showed a tendency to underestimate the 
observed values (bias ranging from -0.11 to 
-0.73), while the rest of the models tended to 
overestimate the real values, giving a positive 
bias (from 0.0 to 0.75). Even though ln(Ca) 
showed good results in the model calibration 
and the validation metrics were better than 
other models, the R2 showed poor correlation 
between the observed and modeled values 
(R2 = 0.56). Due to the low accuracy in the 
prediction, ln(Ca), Ba, and ln(Mg) were 
dismissed (0.42<R2<0.70) (table 2). The rest 
of the models presented good fitness between 
modeled and observed values with R2 values 
between 0.81 and 0.99, showing the robust 
relationships found between the spectral and 
physicochemical data. Ln(Si) had the best 
correlation between modeled and observed 

values of all, confirming the high R2 (0.99) 
and low RMSE% value (18%, table 2). 

Few studies have quantitatively analyzed 
water bodies in mining environments 
applying remotely-sensed spectra 
to compare with the above findings. 
Recently Flores et al. (2021) applied UAS-
hyperspectral imaging to map pH, redox, 
Al, and Fe concentration in the confluence 
between the Odiel River and the Tintillo 
River (Iberian Pyrite Belt, Huelva province). 
They applied a supervised random forest 
regression approach, obtaining R2 values 
of 0.73, 0.82, 0.68, and 0.66, respectively, 
with the pixels only used as the validation 
set. Instead, our study found R2 values of 
0.98 (pH), 0.85 (ORP), 0.98 (Al), and 0.94 
(Fe). Although our values are higher, the 
prediction of water quality parameters in 
a rapidly changing environment, such as a 
river, is a more challenging task since the 
spectral response of water can be affected by 
the water depth and dynamics. By contrast, 
the spectral response of a deep and steady 
water body is expected to be homogeneous, 
giving higher performance metrics. 
Schroeter and GläÄer (2011) characterized 
some water quality parameters in lignite 
mining lakes, among them pH and Fe. 
They used a bivariate correlation between 
Landsat TM satellite data and the chemical 
analysis, but no models were developed. 
The highest correlation was found between 
the red band and Fe (r=0.645), while pH 
and the red band were poorly correlated (r 

Table 2 Performance metric statistics for the best-fitted water quality parameters.

WQP Regression Candidate model RMSE% MAPE bias R2

pH MLR 2.046-5.674*A1+56.413*A7 15% 0.19 0.31 0.98

ln(ORP) SLR 6.397-25.657*A7 4% 0.03 0.16 0.85

ln(EC) SLR 3.633-138.510*g531 32% 0.04 0.09 0.87

ln(Al) MLR 6.230-142.199*A7+6.751*A1 14% -0.04 -0.17 0.98

Ba SLR 0.003+0.818*g560 57% 0.97 0.00 0.42

ln(Ca) SLR 6.223-81.167*g531 12% 0.10 -0.11 0.56

ln(Cu) SLR 4.957-170.154*A7 57% 0.17 1.09 0.92

ln(Fe) SLR 9.489-275.345*A7 25% 0.01 0.75 0.94

ln(Mg) SLR 6.606-114.772*g531 14% 0.10 0.13 0.7

ln(Mn) SLR 4.865-135.763*A7 75% 0.056 -0.73 0.95

ln(S) SLR 9.874-181.692*g560 14% 0.09 0.33 0.81

ln(Si) SLR 4.336-99.318*A7 18% -0.19 0.19 0.99

ln(Zn) SLR 6.259-184.166*A7 40% 0.11 0.22 0.83

SLR: Simple linear regression; MLR: Multiple linear regression
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= −0.378). However, in the present study, 
the correlations found were stronger for 
both parameters. The pH was correlated 
with r650 (r = 0.765) but had the highest 
correlation with A1 (r = −0.92, table 1). The 
Fe concentration was also correlated with 
r650 (r = −0.66) having the best correlation 
with A7 (r = −0.93, tab. ). Tesfamichael and 
Ndlovu (2018) estimated physicochemical 
parameters from ASTER and Landsat 
imagery in a gold mining area. Both satellites 
performed similarly in estimating Eh and Ca 
(0.25 < R2 < 0.36 and 19 < RMSE% < 56). 
Redox potential was estimated using the 
blue band (Landsat) and SWIR 6 (ASTER), 
while Ca was estimated using short-wave 
infrared band (Landsat) and NIR (ASTER). 
In this study, ORP was best estimated using 
A7 (R2 = 0.85 and RMSE% = 4 and ln(Ca) 
using g531 (R2 0.56 and RMSE% = 12). In 
light of this, the models generated with UAS-
multispectral imagery were different in the 
selected bands than in the previous studies 
but the accuracy of the obtained models was 
higher, enhancing the value of low altitude 
remote sensing at a local scale. 

Finally, to show the real potential of UAS 
for monitoring acidic water and predicting 
water quality parameters, the empirical 
relationships obtained were extended to the 

LLC validation dataset, producing spatial 
distribution maps for each studied parameter 
(fig. 2). LLC (fig. 1B) is a small waterbody 
highly affected by AMD, originated by 
surficial waters flowing through the waste 
dump and pyritic waste. The water is stagnant 
and its composition is expected to be 
homogeneous throughout the water surface. 
Nevertheless, fig. 2 shows the surface water 
intake at the right edge, which has a different 
composition from the rest of the water body. 
This water intake was analyzed and presented 
a pH value of 3.12, EC of 0.415 mS/cm (ln 
EC=0.415 mS/cm), and ORP of 415 mV (ln 
ORP=6.028 Mv). These values are coincident 
with the ones observed in fig. 2.

Conclusion
The current study demonstrates that the 
application of empirical models to generate 
spatial distribution maps can be an effective 
and easily applicable monitoring tool in 
AMD-affected sites. Moreover, the Micasense 
RedEdge-MX Dual commercial sensor 
performed well, predicting several water 
quality parameters, which is especially 
valuable for small water bodies that cannot 
be monitored by satellites due to their low 
spatial resolution. The results obtained 
here are intended to contribute to the water 

Figure 2 Spatial distribution maps for the estimated water quality parameters in Laguna Lagunazo C (LLC). 
All the models were performed with ln-transformed data, except pH. 
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resources management and decision-making 
process during the exploitation and closure 
phase of mining sites. It is noteworthy that 
the empirical models are data-driven and are 
based on in situ water quality measurements. 
Thus, the models found in this study should 
be calibrated for application in other 
locations, water type, and/or season. For 
instance, if in a mining area is neutral and 
alkaline metalliferous drainage rather than 
just AMD, this must be considered during the 
calibration phase. Further studies should be 
done to investigate the influence of seasonal 
variability on the reflectance values of the 
water bodies due to changes in the dissolved 
concentrations of pollutants.
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