Suitability Assessment of CO₂ Storage in Deep Saline Reservoirs with Different Conditions

Bo Liu¹, Honghan Chen², Hongkun Chen³

1 China university of Mining and technology, Xuzhou, Jiangsu, 221116, P.R. China;

2 China university of geosciences, Beijing, 100083, P.R. China

3 Research Institute of Safety and Environment Technology, China National Petroleum Corporation, Beijing,

102206, P.R. China

Abstract Overuse of fossil fuels in industrial production and human life has increased greenhouse gas emission, which makes a serious threat to human survival environment. CO_2 geological storage in deep saline aquifer can effectively control the extensive emission of CO_2 . The study area of deep saline aquifers for CO_2 geological storage site was set in Dongying Sag, a structural unit of the Bohai Bay Basin. In this paper, we first analyzed the properties of saline aquifers and cap rocks. The analysis results showed that among Shahejie Formation layers, Es2, upper and middle Es3 layers with burial depth between 1464 and 3102 m, four sets of reservoir and cap layers were suited for CO_2 storage in deep saline aquifers. In order to assess the suitability of CO_2 storage in these four saline reservoirs, simulation software TOUGHREACT was selected to simulate of CO_2 fluid migration process in a specific CO_2 geological storage layer. Comparative CO_2 injection simulation and analysis were conducted in the four sets layers of Shahejie Formation with different conditions, including reservoir depth, thickness, pressure, temperature, permeability and porosity. The simulation results showed that reservoir thickness, porosity and permeability has significant effect on migration movement and the pressure field variation characteristics. Comparative simulation results showed that shallower and thicker reservoir is more suitable for CO_2 geological storage in deep saline aquifer.

Keywords CO₂, saline aquifer, geological storage, suitability assessment